4 7月, 2017

阿特曼Z-score模型

纽约大学斯特恩商学院教授爱德华·阿特曼(Edward Altman)在1968年就对美国破产和非破产生产企业进行观察,采用了22个财务比率经过数理统计筛选建立了著名的5变量Z-score模型。Z-score模型是以多变量的统计方法为基础,以破产企业为样本,通过大量的实验,对企业的运行状况、破产与否进行分析、判别的系统。Z-score模型在美国、澳大利亚、巴西、加拿大、英国、法国、德国、爱尔兰、日本和荷兰得到了广泛的应用。


模型A

公开上市交易的制造业公司的破产指数模型:
Z =1.2X1 + 1.4X2 +3.3X3 + 0.6X4 + 0.999X5
或Z=0.012X1+0.014X2+0.033X3+0.006X4+0.999X5 两个公式区别在前四个变量是否用百分比表示,最后一个变量是倍数形式,所以不做改变
X1 = 流动资本 / 总资产 = (流动资产— 流动负债) / 总资产
这一指标反映流动性和规模的特点。流动资本=流动资产-流动负债,流动资本越多,说明不能偿债的风险越小,并可反映短期偿债能力。
X2 = 留存收益 / 总资产
这一指标衡量企业积累的利润,反映企业的经营年限。
X3 =息税前收益/ 总资产 = (利润总额+财务费用) / 总资产
这一指标衡量企业在不考虑税收和融资影响,其资产的生产能力的情况,是衡量企业利用债权人和所有者权益总额取得盈利的指标。该比率越高,表明企业的资产利用效果越好,经营管理水平越高。
X4 = 优先股和普通股市值 /总负债= (股票市值 * 股票总数) / 总负债
这一指标衡量企业的价值在资不抵债前可下降的程度,反映股东所提供的资本与债权人提供的资本的相对关系,反映企业基本财务结构是否稳定。比率高,是低风险低报酬的财务结构,同时这一指标也反映债权人投入的资本受股东资本的保障程度。
X5 = 销售额 / 总资产
这一指标衡量企业产生销售额的能力。表明企业资产利用的效果。指标越高,表明资产的利用率越高,说明企业在增加收入方面有良好的效果。
判断准则:Z<1.8,破产区;1.8≤Z<2.99,灰色区;2.99<Z,安全区
Edward Altman对该模型的解释是:Z-score 越小,企业失败的可能性越大,Z-score小于1.8的企业很可能破产。

模型B

Altman针对非上市公司给出了修正的破产模型
Z = 1.0X3 + 6.56X1 + 3.26X2 + 0.72X4
判断准则:Z<1.23,破产区;1.23≤Z<2.9,灰色区;2.9<Z,安全区

原始的Z得分(针对公共制造企业):如果Z得分大于等于3.0,则企业不可能破产.如果Z得分小于1.8,则企业很可能破产.比分在1.8-3.0之间,是灰色区域.企业Z得分在此范围的话,则一年内破产可能性为95%,两年内的破产可能性为70%.很显然,Z得分越高,企业越不可能破产.
模型A的Z得分(针对私营制造企业):主要适用私营制造企业,而不能应用于其他类型的公司.如果Z得分大于2.90,企业则不可能破产.如果Z得分小于低于1.23,企业则很可能破产.Z得分在1.23-2.90之间的企业,一年内破产的可能性高达95%,两年内破产的可能性是70%.Z得分越高,企业越不可能破产.
模型B的Z得分(针对私营一般性公司):这一版本的Z得分主要用来预测私营的非制造企业在1-2年内破产的可能性,所以模型B的Z得分只适用于私营的一般性公司,而不能应用于躯体类型的公司.如果Z得分大于2.60,企业则不可能破产,如果Z得分小于等于1.10,企业则很有可能破产.1.10-2.60之间为灰色区域,Z得分1.23-2.90之间的企业,一年内破产的可能性为95%,两年内破产的可能性为70%.对于企业来说,Z得分越高越好.

限制缺点

1、仅考虑2个极端情况(违约与没有违约),对于负债重整、或是虽然发生违约但是回收率很高的情况就没有做另外较详细的分类。
2、权数未必一直是固定的,必须经常调整。
3、并未考虑景气循环效应因子的影响。
4、公司违约与否与风险特性的关系实际上可能是非线性的。
5、缺乏经济的理论基础,也就是为什么就这几个财务变量值得考虑,难道其它因素(例如公司治理变量)就没有预测能力吗?
6、对市场的变化不够灵敏(运用的会计资料更新太慢)。
7、无法计算投资组合的信用风险,因为Z-Score模型主要是针对个别资产的信用风险进行评估,对整个投资组合的信用风险无法衡量。

计算公式

Z得分的计算公式, 需要说明的是,公式针对公共企业与私营企业要作相应的调整和变更。
Altman’s Z-Score
Working Capital×1.2/Total Assets
Retained Earnings / Total Assets ×1.4
EBIT / Total Assets ×3.3
Market Value of Equity / Book Value of Total Liabilities ×0.6
Sales / Total Asset × 0.999
Z-Score(Public MFG COmpanies)
Working Capital / Total Assets × 0.717
Retained Earnings / Total Assets × 0.847
EBIT/Total Assets × 3.107
Market Value of Equity / Market Value of Total Liabilities ×0.420
Sales / Total Asset ×0.998
A-Z’-Score (Privately held MFG companies)
Working Capital / Total Assets ×6.56
Retained Earnings / Total Assets ×3.26
EBIT / Total Assets ×6.72
Market Value of Equity / Market Value of Total Liabilities ×1.05
B-Z’-Score(Privately held non-MFG Companies)

阿特曼Z-score模型案例分析

案例一

Z-Score模型在制造业上市公司财务预警中的实证分析
1.样本的选取。
本文以沪深两市A股市场2007年因财务状况异常被特别处理的企业作为研究样本。由于A股上市公司执行国内的会计准则和会计制度,其对外财务信息容易收集也较完整,上市公司被特别处理的特征较明显,2001年2月22日中国证监会根据《公司法》正式颁布了《亏损上市公司暂停上市和终止上市实施办法,建立了我国上市公司退市机制,使得这一研究对象具有很高的关注度。对上市公司进行准确的预测和判断.对于规范证券市场的运作、降低投资风险和保护投资者利益等具有重要的现实意义。
本文从2007年ST公司中界定12家上市公司作为研究样本,再按照与之同时期、资产规模相当(相差不超过10%)的原则选取与其相对应的12个正常上市公司。本文研究基于ST企业被“特别处理”的前3年的资料,即假设上市公司在第t年被实施ST.选取上市公司ST之前的第t一2、t一2、t一3年财务数据为样本建立模型。
本文所用样本数据来源于证券之星、深沪证券交易所网站以及上市公司的年度报告,采用Excel2003等软件进行数据处理。
2.指标的适应性设定。
鉴于我国股市非流通股无市场价格,在计算股权市价总值时采用的是每股股价与社会公众股股份数相乘的办法.又考虑到计算息税前利润时需要用到利息费用,因此对Z计分模型中的各项指标的设定作以下调整:
X1=(流动资产-流动负债)/资产总额;
X2=(未分配利润+盈余公积金)/资产总额;
X3=(税前利润十财务费用)/资产总额;
x4=(每股市价*流通股数+每股净资产*非流通股数)/负债总额;
X5=主营业务收入/资产总额

案例二

Z-Score模型在我国制造业上市公司财务预警中的实证分析
按照Z—Score模型的要求收集整理财务数据,利用Excel计算得到不同年份制造业上市公司的z值得分。见下表。
公司名称 Z值
t-1年 t-2年 t-3年
ST建机(600984) 1.48 2.041 2.147
S*ST东方A(000725) -0.265 0.458 0.685
ST自仪(600848) -0.076 -O.56l 0.133
ST通科(600862) 0.963 1.872 1.764
S*ST四环(000605) -0.864 0.387 1.087
ST汇通(000920) 0.861 1.542 1.695
ST中纺(600610) 0.87 1.695 1.793
ST三元(600429) 2.882 1.819 1.78
ST金马(000980) 0.58 1.676 2.76
ST天宇(000723) -0.37 1.12 1.37
ST常柴(000570) -0.014 0.81 1.7
ST证星(600213) 0.52 0.5 1.8l
鼎盛天工(600335) 1.867 1.873 1.942
经纬纺机(000666) 2.246 1.919 1.959
江钻股份(000852) 3.22 2.682 1.994
青海华鼎(600340) 1.974 1.969 3.453
北人股份(600860) 1.275 1.879 2.262
全柴动力(600218) 2.992 1.747 3.03
国祥股份(600340) 3.67 3.78 4.14
北矿磁材(600980) 2.869 4.203 6.129
思达高科(000676) 3.05 1.85 2.55
长征电器(600112) 3.2l 3.03 2.68
江淮动力(00086) 1.7 2.92 2.73
轻工机械(600605) 3.22 3.07 3.02
1.对ST公司的预测。由上表可以看出,ST公司在t-1年有11家Z值小于1.8(ST三元除外),有的甚至已为负数,这充分说明了公司在被特别处理前一年内其财务状况已经发生了严重的恶化.具有巨大财务危机,预测准确率高达91.7%;在T-2、t-3年有9家Z值小于1-8,预测准确率为75%;离ST的时间越短.预测的精度越高。前一年的预测精度较高.到了前两年、前三年其预测精度大幅度下降。同时可以看出ST公司在被特别处理前三年的会计年度中,其Z值都在2.99以下,不存在Z值大于2.99的公司.并且Z值呈逐年减小的趋势.这说明ST公司在被特别处理前两年乃至前三年,已经显现出财务恶化的隐患。
2.对非ST公司的预测。由上表可计算出三年中对非ST公司预测的准确率平均比例为93.94%(扣除江淮动力于2004年被特别处理的情况)。非sT公司Z值处于1.8~2.99(即处于灰色地带)之间的平均比例为49.5%,基本符合规律,非ST公司Z值大于2.99的平均比例为44.46%,这说明我国制造业上市公司财务状况基本良好,有一定的抵御风险的能力。

You may also like...

发表评论